
Scheduling Algorithm
Algorithm – Scheduler

 Input: Graph Matrix, Computation Cost Matrix
Output: Schedule

1) compute rank
2) sch = create an empty schedule
3) T = sort tasks in descending order based on their rank
4) for each task t in T
5) if t is an entry task then
6) sch = assign t to machine with the cheapest cost
7) else
8) sch = assign t to machine with a combination of cheapest cost and transfer time
9) end if
10) end for
11) return sch

A Scheduling Platform for Computing  
Big Data in the Cloud

Logan Schneider, Dr. Aravind Mohan
Department of Computer Science, McMurry University

Abstract

Introduction

Methodology Experiments
The era of big data has started. Over the past decade, the digital
revolution has resulted in three major challenges that define big data. The
large volume, variety of types, and velocity of data generation make an
arbitrary dataset be classified as big data. On the other side, computing
big data is presented with the grand challenge of transforming billions of
bits and bytes into insights in a time-effective manner. One solution to this
problem is to represent computation as a directed acyclic graph called
workflow and use the cloud for allocating tasks in the graph to a
computational resource that is more suited to the task. This solution
allows the effective use of computational resources through scheduling
and provides a framework for data to be processed more quickly. In this
research, a popular scheduling algorithm known as Heterogenous Earliest-
Finish-Time (HEFT) algorithm was implemented to solve the issue of
computing big data in a usable and scalable manner using the Java
programming language in an object-oriented approach. An important part
of this algorithm is to rank the tasks in the workflow based on their
computational and data transfer time. The HEFT algorithm prioritizes the
task with the highest upward rank value at each computational step and
applies a series of rules to identify the best processor for the task based
on their computational and transfer time. The preliminary experiments
conducted in this research are instrumental in understanding existing
research and thinking of new ways to solve the important problem of
computing big data effectively in the future.

We have been propelled into an era of remarkable technological
advancements, from many improvements in the field of storage to
upgrades in displays, the technology we currently have is quite advanced
and even seems uncanny compared to the early days of technology.
Despite taking these strides towards progress, there exists a bad habit of
taking these advancements for granted by continuing to cling to some
outdated methods that, while proven to be functional, have become an
inefficient and clumsy use of our higher-level technology. One area where
this inefficiency is very relevant is in the under utilization of processing in
general. The speed at which we can process tasks has significantly
improved, yet an over reliance squanders this potential in processing on
the outdated method of Homogenous processing. This practice not only
hinders progress but also results in an unwieldy use of this improved
technology. A more viable solution to this problem lies in heterogeneous
processing, which is vastly different from the homogeneous approach.
Heterogeneous processing involves distributing tasks across multiple
processors instead of a single processor, thereby optimizing efficiency,
reducing processing time, and lowering overall costs. For a broad example,
imagine you hired one worker to do five different tasks each with a
different completion time it would probably take quite some time, now
compare that to hiring around four workers to do the same tasks, which
would not only greatly reduce the amount of time it would take to do the
task, but would also save cost in a variety of ways and greatly reduce the
strain on the workers. A notable algorithm focused on the implementation
of heterogeneous processing is the Heterogeneous Earliest-Finish-Time
(HEFT) algorithm, this proposed algorithm offers a better approach to
heterogeneous processing, which ultimately helps process tasks more
efficiently and cost-effectively.

The algorithm being used needs a graph matrix that tells the program the
edges of the nodes. It also needs a cost matrix which the program uses to
output a schedule with the HEFT algorithm. To start, find the rank of a task. If
it has no successors, the rank will be the average weight of the cost.
Otherwise, the rank is the average weight of the task's computation cost plus
the max value of the successor’s edge weight and its rank. Looking at the
workflow graph below, for example, task 7’s rank cost is 6.67 because it’s the
last task and has no successors. To further add to this example, consider a
successor to task 7, task 5. We can find its rank by adding its cost, 6.67, to the
highest number by adding the weight of the successor’s edge and its rank. To
find the max successor value, you can get the edge weight between tasks 5
and 7, which is 6. This weight is then added to the successor’s rank. in this
case, the weight and rank sum to 12.67. This is then added to the weight of
task 5 to get the rank value of 19.34. We chose task 7 to compute the max
value because it is the only successor to task 5. If there was another successor
to a task like with task 4, you would find its max successor value the same
way. You'd add the edge weight to the rank of each successor. Then, you'd
compare the numbers. You compare the values of Task 5, 21.33, and Task 6,
32.33, with Task 6 being the max value. Then, you'd add the weight of Task 4,
5.67. After computing the ranks, you would sort them into a list of descending
values. Then, you would check which machine should process them. First,
make an empty schedule from the sorted list. Then, find the machine with the
cheapest cost and transfer time. Assign the task to that machine, unless it is
the first task. In that case, assign the task to the machine with the cheapest
cost.

Computation Table

Workflow Graph

Schedule Table

We had three cases in which
we had experimented using
the HEFT algorithm vs a
Homogenous algorithm. In all
three of these cases, it was
shown that HEFT, represented
by the blue line[H] in the
figures, was more efficient in
t i m e t h a n u s i n g a
homogenous method for each
process.

 The red[P1], green[P2], and
purple[P3] lines in the figures
represent the use case if we
had instead used a specific
machine to process all the
tasks, aka the Homogenous
method. We did this to prove
whether or not using the
H E F T a l g o r i t h m w o u l d
present a more efficient time
than using a Homogenous
method on any one of the
machines. It was seen in the
experiments that using HEFT
was indeed a more efficient
method and showed a lower
time.

Conclusion
After running these experiments we have concluded that HEFT is a
reliable and effective use of computational resources when compared
to a Homogenous method. Using HEFT to prioritize the rank value
from the highest to the lowest, helps not only identify the best
processor to use but also the best processing order. It is apparent
that by utilizing the HEFT algorithm we can cut down a lot of the
waste in time and computing power. In some cases, it may seem to
only cut a little time, but in the long and short run every little second
counts. This is true when it comes to increasing speeds and handling
large amounts of data efficiently. The larger the amount of data being
computed means a much wider gap in accumulated time between the
use of the HEFT algorithm and the use of a Homogenous method,
the HEFT algorithm being the larger time saver between the two as
more data is entered. Looking towards the future, using HEFT will
allow the ability to compute an even larger amount of data and a
more complex set of data while being much smoother, cheaper, and
quicker than the current methods.

Gantt Chart Diagram

